

Acidosis and Alkalosis (1)

Dr Parisa javadian Adult Nephrologist SKUMS

NORMAL ACID-BASE HOMEOSTASIS

- Systemic arterial pH is maintained between 7.35 and 7.45 by extracellular and intracellular chemical buffering together with respiratory and renal regulatory mechanisms.
- The control of arterial CO2 tension (Paco2) by the central nervous system (CNS) and respiratory systems
- and the control of the plasma bicarbonate by the kidneys stabilize the arterial pH by excretion or retention of acid or alkali.

The acid base "balance"

Abelow, Understanding Acid-Base, Williams & Wilkins 1998

Fig 1. Acid-base balance is maintained by effective renal and respiratory homeostatic mechanisms

The metabolic and respiratory components that regulate systemic pH are described by the
 Henderson- Hasselbalch equation:

HENDERSON-HASSELBALCH EQUATION

```
pH = pK + log [HCO<sub>3</sub>-]/0.03PCO<sub>2</sub>
pH = 6.1 + log 24/(0.03 x 40)
pH = 6.1 + log 24/1.2
pH = 6.1 + log 20
pH = 6.1 + 1.3
pH = 7.4
```

(Abelow B, 1998 "Understanding Acid-Base")

(Abelow B, 1998 "Understanding Acid-Base")

- Under most circumstances, CO2 production and excretion are matched, and the usual steady-state Paco2 is maintained at 40 mmHg.
- Underexcretion of CO2 produces hypercapnia, and overexcretion causes hypocapnia.
- Nevertheless, production and excretion are again matched at a new steady-state Paco2.
- Therefore, the Paco2 is regulated primarily by neural respiratory factors and is not subject to regulation by the rate of CO2 production.
- Hypercapnia is usually the result of hypoventilation rather than of increased CO2 production.
- Increases or decreases in Paco2 represent derangements of neural respiratory control or are due to compensatory changes in response to a primary alteration in the plasma [HCO3-].

(Abelow B, 1998 "Understanding Acid-Base")

Fig 2. Changes in PaCO₂ level and bicarbonate concentration [HCO₃] can help identify the nature of the acid-base disorder.

The kidneys regulate plasma [HCO3-]

- through three main processes:
 - ▶ (1) "reabsorption" of filtered HCO3-,

▶ (2) formation of titratable acid, and

▶ (3) excretion of NH4+ in the urine.

Abelow, Understanding Acid-Base, Williams & Wilkins 1998

► The kidney filters 4000 mmol of HCO3- per day. To reabsorb the filtered load of HCO3-, the renal tubules must therefore secrete 4000 mmol of hydrogen ions.

- ▶ Between 80 and 90% of HCO3- is reabsorbed in the proximal tubule.
- ► The distal nephron reabsorbs the remainder and secretes H+ to defend systemic pH.

- ▶ While this quantity of protons, 40-60 mmol/d, is small, it must be secreted to prevent chronic positive H+ balance and metabolic acidosis.
- ► This quantity of secreted protons is represented in the urine as titratable acid and NH4+.
- Metabolic acidosis in the face of normal renal function increases NH4+ production and excretion.
- ▶ NH4+ production and excretion are impaired in
 - 1. <u>chronic renal failure</u>,
 - 2. <u>hyperkalemia</u>, and
 - 3. <u>renal tubular acidosis</u>

DIAGNOSIS OF GENERAL TYPES OF DISTURBANCES

- The most common clinical disturbances are simple acid-base disorders;
- i.e., metabolic acidosis or alkalosis or respiratory acidosis or alkalosis.
- Because compensation is not complete, the pH is abnormal in simple disturbances.
- More complicated clinical situations can give rise to mixed acid-base disturbances.

Simple Acid-Base Disorders

- Primary respiratory disturbances (primary changes in Paco2) invoke compensatory metabolic responses (secondary changes in [HCO3-]),
- and primary metabolic disturbances elicit predictable compensatory respiratory responses (secondary changes in Paco2)

Primary Acid-Base Disturbances with a Secondary ("Compensatory") Response

- Metabolic acidosis
 - ▶ pH <7.38 and bicarbonate [HCO3 –] <22 mmol per liter
 - Secondary (respiratory) response:
 - Paco2 = 1.5 × [HCO3 −] + 8±2 mm Hg†
 - ▶ or [HCO3 –] + 15 mm Hg‡
 - ► Complete secondary adaptive response within 12-24 hr
 - ► Superimposed respiratory acidosis or alkalosis may be diagnosed if the calculated Paco2 is greater or less than predicted

Primary Acid-Base Disturbances with a Secondary ("Compensatory") Response

- Metabolic alkalosis
 - ▶ pH >7.42 and [HCO3 -] >26 mmol per liter
 - Secondary (respiratory) response: Paco2 = 0.7 × ([HCO3 -] 24) + 40±2 mm Hg
 - ▶ or [HCO3 -] + 15 mm Hg‡
 - ightharpoonup or 0.7 × [HCO3 –] + 20 mm Hg§
 - ► Complete secondary adaptive response within 24-36 hr
 - Superimposed respiratory acidosis or alkalosis may be diagnosed if the calculated Paco2 is greater or less than predicted

Primary Acid-Base Disturbances with a Secondary ("Compensatory") Response

- Respiratory acidosis
 - pH <7.38 and Paco2 >42 mm Hg
 - Secondary (metabolic) response
 - ► Acute: [HCO3 –] is increased by 1 mmol/liter for each Paco2 increase of 10 mm Hg above 40 mm Hg
 - ► Chronic: generally [HCO3 –] is increased by 4-5 mmol/liter for each Paco2 increase of 10 mm Hg above 40 mm Hg
 - Complete secondary adaptive response within 2-5 days
 - Superimposed metabolic alkalosis or acidosis may be diagnosed if the calculated [HCO3 –] is greater or less than predicted

Primary Acid-Base Disturbances with a Secondary ("Compensatory") Response

- Respiratory alkalosis
 - pH >7.42 and Paco2 <38 mm Hg</p>
 - Secondary (metabolic) response
 - ► Acute: [HCO3 –] is decreased by 2 mmol/liter for each Paco2 decrease of 10 mm Hg below 40 mm Hg
 - ► Chronic: [HCO3 –] is decreased by 4-5 mmol/liter for each Paco2 decrease of 10 mm Hg below 40 mm Hg
 - Complete secondary adaptive response in 2-5 days
 - Superimposed metabolic alkalosis or acidosis may be diagnosed if the calculated [HCO3

 is greater or less than predicted

Compensation Example

- Metabolic acidosis due to an increase in endogenous acids (e.g., ketoacidosis) lowers extracellular fluid [HCO3-] and decreases extracellular pH.
- ► This stimulates the medullary chemoreceptors to increase ventilation and to return the ratio of [HCO3-] to Paco2, and thus pH, toward, but not to, normal.
- ► The degree of respiratory compensation expected in a simple form of metabolic acidosis can be predicted from the relationship:
- Paco2 = $(1.5 \times [HCO3-]) + 8 \pm 2$.
- ► Thus, a patient with metabolic acidosis and [HCO3-] of 12 mmol/L would be expected to have a Paco2 between 24 and 28 mmHg.
- ▶ Values for Paco2 <24 or >28 mmHg define a mixed disturbance (metabolic acidosis and respiratory alkalosis or metabolic alkalosis and respiratory acidosis, respectively).

TABLE 51-1 Prediction of Compensatory Responses to Simple Acid-Base Disturbances and Pattern of Changes

		RANGE OF VALUES		
DISORDER	PREDICTION OF COMPENSATION	рН	HCO ₃ -	Paco ₂
Metabolic acidosis	Paco ₂ = $(1.5 \times HCO_3^-) + 8 \pm 2$ or Paco ₂ will $\downarrow 1.25$ mmHg per mmol/L \downarrow in [HCO ₃ ⁻] or Paco ₂ = [HCO ₃ ⁻] + 15	Low	Low	Low
Metabolic alkalosis	Paco ₂ will \uparrow 0.75 mmHg per mmol/L \uparrow in [HCO ₃ -] or Paco ₂ will \uparrow 6 mmHg per 10 mmol/L \uparrow in [HCO ₃ -] or Paco ₂ = [HCO ₃ -] + 15	High	High	High
Respiratory alkalosis		High	Low	Low
Acute	[HCO $_3$ -] will $↓$ 0.2 mmol/L per mmHg $↓$ in Paco $_2$			
Chronic	[HCO $_3$ -] will $↓$ 0.4 mmol/L per mmHg $↓$ in Paco $_2$			
Respiratory acidosis		Low	High	High
Acute	[HCO $_3$ -] will ↑ 0.1 mmol/L per mmHg ↑ in Paco $_2$			
Chronic	[HCO₃⁻] will ↑ 0.4 mmol/L per mmHg ↑ in Paco₂			