

Acidosis & Alkalosis (5)

Non-Anion Gap Metabolic Acidoses

- Alkali can be lost from the gastrointestinal tract in diarrhea or from the kidneys (renal tubular acidosis, RTA).
- In these disorders reciprocal changes in [Cl-] and [HCO3-] result in a normal AG.
- In pure non-AG acidosis, therefore, the increase in [Cl-] above the normal value approximates the decrease in [HCO3-].
- The absence of such a relationship suggests a mixed disturbance.

Causes of Non-Anion Gap Acidosis

TABLE 51-5 Causes of Non-Anion Gap Acidosis

- I. Gastrointestinal bicarbonate loss
 - A. Diarrhea
 - B. External pancreatic or small-bowel drainage
 - C. Ureterosigmoidostomy, jejunal loop, ileal loop
 - D. Drugs
 - 1. Calcium chloride (acidifying agent)
 - 2. Magnesium sulfate (diarrhea)
 - 3. Cholestyramine (bile acid diarrhea)

II. Renal acidosis

- A. Hypokalemia
 - 1. Proximal RTA (type 2)

Drug-induced: acetazolamide, topiramate

2. Distal (classic) RTA (type 1)

Drug-induced: amphotericin B, ifosfamide

- B. Hyperkalemia
 - 1. Generalized distal nephron dysfunction (type 4 RTA)
 - a. Mineralocorticoid deficiency
 - b. Mineralocorticoid resistance (PHA I, autosomal dominant)
 - c. Voltage defect (PHA I, autosomal recessive, and PHA II)
 - d. Tubulointerstitial disease
- C. Normokalemia
 - 1. Chronic progressive kidney disease

III. Drug-induced hyperkalemia (with renal insufficiency)

- A. Potassium-sparing diuretics (amiloride, triamterene, spironolactone, eplerenone)
- B. Trimethoprim
- C. Pentamidine
- D. ACE-Is and ARBs
- E. Nonsteroidal anti-inflammatory drugs
- F. Calcineurin inhibitors
- G. Heparin in critically ill patients

IV. Other

- A. Acid loads (ammonium chloride, hyperalimentation)
- B. Loss of potential bicarbonate: ketosis with ketone excretion
- C. Expansion acidosis (rapid saline administration)
- D. Hippurate
- E. Cation exchange resins

TREATMENT: NON-ANION GAP METABOLIC ACIDOSES

- In diarrhea, stools contain a higher [HCO3-] and decomposed HCO3- than plasma so that metabolic acidosis develops along with volume depletion.
- Instead of an acid urine pH (as anticipated with systemic acidosis), urine pH is usually around 6 because metabolic acidosis and hypokalemia increase renal synthesis and excretion of NH4+, thus providing a urinary buffer that increases urine pH.
- Metabolic acidosis due to gastrointestinal losses with a high urine pH can be differentiated from RTA because urinary NH4+ excretion is typically low in RTA and high with diarrhea.

Urine anion gap (UAG)

- Urinary NH4+ levels can be estimated by calculating the urine anion gap (UAG): UAG = [Na+ + K+]u - [Cl-]u.
- ▶ When [Cl-]u > [Na+ + K+]u, the UAG is negative by definition.
- ► This indicates that the urine ammonium level is appropriately increased, suggesting an extrarenal cause of the acidosis.
- Conversely, when the UAG is positive, the urine ammonium level is low, suggesting a renal cause of the acidosis.

- Loss of functioning renal parenchyma by progressive renal disease leads to
 - hyperchloremic acidosis when the glomerular filtration rate (GFR) is between 20 and 50 mL/min
 - ▶ and to uremic acidosis with a high AG when the GFR falls to <20 mL/min.
- In advanced renal failure, ammoniagenesis is reduced in proportion to the loss of functional renal mass, and ammonium accumulation and trapping in the outer medullary collecting tubule may also be impaired.
- ▶ Because of adaptive increases in K+ secretion by the collecting duct and colon, the <u>acidosis of chronic renal insufficiency is typically normokalemic.</u>

- Proximal RTA (type 2 RTA) (Chap. 284) is most often due to generalized proximal tubular dysfunction
- manifested by glycosuria, generalized aminoaciduria, and phosphaturia (Fanconi syndrome).
- ▶ With a low plasma [HCO3-], the urine pH is acid (pH < 5.5).
- ► The fractional excretion of [HCO3-] may exceed 10-15% when the serum HCO3- > 20 mmol/L.
- ▶ Because HCO3- is not reabsorbed normally in the proximal tubule, therapy with NaHCO3 will enhance renal potassium wasting and hypokalemia.

- ► The typical findings in acquired or inherited forms of classic distal RTA (type 1 RTA) include
 - hypokalemia,
 - non-AG metabolic acidosis,
 - ▶ low urinary NH4+ excretion (positive UAG, low urine [NH4+]),
 - ▶ and inappropriately high urine pH (pH > 5.5).
 - Most patients have hypocitraturia and hypercalciuria, so nephrolithiasis, nephrocalcinosis, and bone disease are common. I

- in generalized distal nephron dysfunction (type 4 RTA), hyperkalemia is disproportionate to the reduction in GFR because of coexisting dysfunction of potassium and acid secretion.
- Urinary ammonium excretion is invariably depressed, and renal function may be compromised, for example, due to
 - Diabetic nephropathy,
 - obstructive uropathy,
 - or chronic tubulointerstitial disease.

- Hyporeninemic hypoaldosteronism typically causes non-AG metabolic acidosis, most commonly in older adults with diabetes mellitus or tubulointerstitial disease and renal insufficiency.
- Patients usually have
 - mild to moderate CKD (GFR, 20-50 mL/min)
 - and acidosis,
 - with elevation in serum [K+] (5.2-6.0 mmol/L),
 - concurrent hypertension,
 - and congestive heart failure.
- **Both the metabolic acidosis and the hyperkalemia are out of proportion to impairment in GFR.**
- Nonsteroidal anti-inflammatory drugs, trimethoprim, pentamidine, and angiotensin-converting enzyme (ACE) inhibitors can also cause non- AG metabolic acidosis in patients with renal insufficiency

Urine Anion Gap

- Urine AG: Urine (Na + K Cl)
- Negative value : most patients, diarrhea (normal AG Acidosis)
- Positive value : renal failure, distal RTA, hypoaldosteronism

Characteristics of different types of RTA

Characteristics of the different types of renal tubular acidosis

	Type 1 RTA	Type 2 RTA	Type 4 RTA
Primary defect	Impaired distal acidification	Reduced proximal bicarbonate reabsorption	Decreased aldosterone secretic or effect
Plasma bicarbonate	Variable, may be below 10 meq/L	Usually 12 to 20 meq/L	Greater than 17 meq/L
Urine pH	Greater than 5.3	Variable, greater than 5.3 if above bicarbonate reabsorptive threshold	Usually less than 5.3
Plasma potassium	Usually reduced but hyperkalemic forms exist; hypokalemia largely corrects with alkali therapy	Reduced, made worse by bicarbonaturia induced by alkali therapy	Increased

Renal bicarbonate reabsorption

Abelow, Understanding Acid-Base, Williams & Wilkins 1998

Potassium balance in RTA type4

- Hyperkalemia
 - ► Aldosterone deficiency
 - ► Aldosterone resistance
- Suppression of ammonia excretion (by hyperkalemia)
- Treatment
 - Fludrocortisone
 - Diuretics